

Published on Web 12/05/2008

Reversible, Metal-Free, Heterolytic Activation of H₂ at Room Temperature

Matthias Ullrich, Alan J. Lough, and Douglas W. Stephan*

Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6

Received October 29, 2008; E-mail: dstephan@chem.utoronto.ca

Hydrogen storage materials1 derived from main group compounds and amino-boranes in particular have been the focus of numerous recent experimental 2^{-14} and theoretical studies. 1^{15-21} Generally, such materials liberate H₂ either catalytically or under thermal duress. Unfortunately, none of these main group systems that evolve H₂ are easily regenerated. Nevertheless, the uptake of H₂ by main group systems has also been examined, albeit to a lesser extent. While spectroscopic studies have probed the interactions of main group compounds with H₂ in an argon matrix,²² Power and co-workers were the first to report the uptake of H₂ by a digermyne to give a mixture of digermene, digermane, and primary germane products.²³ In our own efforts, we have described the concept of "frustrated Lewis pairs" (FLPs), in which combinations of Lewis acids and Lewis bases are sterically precluded from adduct formation and activate H_2 .^{24,25} In 2006, we described the first main group system capable of reversible H₂ activation. The zwitterion $[(2,4,6-C_6H_2Me_3)_2P(H)(C_6F_4)B(H)(C_6F_5)_2]$ was shown to liberate H_2 upon heating to 150 °C, while remarkably the resulting phosphine-borane $(2,4,6-C_6H_2Me_3)_2P(C_6F_4)B(C_6F_5)_2$ reacts with H₂ at room temperature to regenerate the starting phosphonium borate.26 This finding illustrated that unquenched Lewis acidity and Lewis basicity can be exploited for the activation of small molecules. In a similar fashion, heterolytic cleavage of H₂ was achieved with sterically encumbered phosphine/borane combinations yielding the phosphonium borates [R_3PH] [$HB(C_6F_5)_3$] (R = t-Bu, 2,4,6-C₆H₂Me₃).²⁷ We and others have applied the concept to activate H₂ with FLPs derived from (alkyl)(amino)carbenes,²⁸ phosphinoalkylboranes,²² and R₂PB(C₆F₅)₂²⁹ as well as combinations of $B(C_6F_5)_3$ with sterically demanding amines, ^{30–32} imines, ^{30,33} or N-heterocyclic carbenes.³⁴ While the discovery of these metalfree systems that activate H₂ has focused attention on applications in catalytic hydrogenation,^{30,32,33,35} the catalyst derived from 1,8- $(PPh_2)_2C_{10}H_6$ and $B(C_6F_5)_3$, recently reported by Erker et al., is the only other system³⁵ known to take up H₂ at 25 °C and release it under thermal duress (60 °C). Herein, we describe a simple phosphine/borane combination that reversibly activates and releases H₂ at room temperature.

The metal-free H₂ activation by combinations of sterically encumbered phosphines R₃P (R = *t*-Bu, 2,4,6-C₆H₂Me₃) with B(C₆F₅)₃ is remarkable. Nonetheless the resulting salts do not liberate H₂ under thermal duress to 150 °C. This inability was attributed to the Lewis basicity of the R₃P and the Lewis acidity of the B(C₆F₅)₃ fragments, respectively. Thus we have explored systematic modifications of the Lewis-acidity and basicity of FLP constituents for the design of systems capable of reversible H₂ binding. Reducing the Lewis acidity of the borane has been shown to significantly diminish the ability to activate H₂,²⁷ whereas the electrophilicity of B(C₆F₅)₃ generates a tightly bound hydride in the resulting borate. In addition, nucleophilic aromatic substitution at the *para*-position of a C₆F₅ ring on B(C₆F₅)₃ was observed when less sterically demanding phosphines were employed, yielding zwitterions of the form [R₃P(C₆F₄)B(F)(C₆F₅)₂].³⁶ To address both concerns, we targeted the hitherto unknown borane $B(p-C_6F_4H)_3$ **1**. Its synthesis was accomplished via a Knochel-type in situ generation of the Grignard reagent ($p-C_6F_4H$)MgBr in Et₂O from the commercially available bromofluoroarene $p-C_6F_4HBr$ utilizing *i*-PrMgCl.³⁷ Subsequent reaction with (Et₂O)BF₃ gave, upon workup and isolation, the etherate (Et₂O)B($p-C_6F_4H$)₃ **2** as a colorless solid in 68% yield. Treatment of this initial product with Me₂SiHCl and removal of all volatiles afforded **1** as a colorless solid. It was further purified either by sublimation in vacuo at 120 °C to give fluffy needles or by precipitation from saturated hydrocarbon solutions at -35 °C. Employing the Gutmann–Beckett^{38–41} and Childs⁴² methods, compound **1** was shown to exhibit about 5% less Lewis acidity in comparison to the fully fluorinated borane, B(C₆F₅)₃.^{36,43}

Figure 1. Synthesis of $B(p-C_6F_4H)_3$ 1 and the reversible activation of H_2 at ambient temperature.

The ¹H NMR spectrum of **1** shows a diagnostic triplet of triplets at 6.74 ppm as a result of the two types of couplings (${}^{3}J_{\rm HF}$ and ${}^{4}J_{\rm HF}$) exhibited by the hydrogen atoms in the para positions. The broad ¹¹B resonance at 59 ppm and the ¹³C and ¹⁹F NMR spectra are all as anticipated. Though efforts to crystallize **1** were unsuccessful, addition of Et₂O or THF to hydrocarbon solutions of **1** readily afforded the adducts **2** and (THF)B(*p*-C₆F₄H)₃ **3**, respectively. An X-ray structure was obtained for the ether adduct **2**, establishing the formulation unambiguously (Figure 1).⁴⁴

The ability of the borane 1 to participate in an FLP to effect H_2 activation was confirmed. Dissolving combinations of 1 and bulky phosphines R_3P resulted in no apparent reactions as evidenced by ¹H, ³¹P, ¹⁹F, and ¹¹B NMR spectroscopy. Subsequent addition of H_2 prompted its spontaneous heterolytic cleavage reaction to afford the salts [R_3PH][HB(p-C₆F₄H)₃] (R = *t*-Bu 4, Cy 5, *o*-C₆H₄Me 6), each isolated in near quantitative yield. The spectroscopic data are fully consistent with these formulations. As an example, compound

4 gives rise to doublets at 5.21 and 56.6 ppm in ¹H and ³¹P NMR, respectively, both with a ${}^{1}J_{HP}$ coupling constant of 445 Hz, consistent with the formation of a phosphonium cation. Similarly, a ¹H NMR quartet signal at 4.15 ppm and an ¹¹B NMR doublet signal at -23.7 ppm, both with a ${}^{1}J_{HB}$ coupling of 90 Hz, support the presence of a hydridoborate anion. Similar spectral parameters were seen for 5 and 6.

The salt 5 is of particular interest, as the corresponding reaction Cy₃P and $B(C_6F_5)_3$ rapidly gives the zwitterion of [Cy₃P(C₆F₄)B(F)(C₆F₅)₂].³⁶ Similarly, Cy₃P and [Ph₃C][B(C₆F₅)₄] react via nucleophilic para attack followed by proton migration to give $[Cy_3P(C_6H_4)CHPh_2][B(C_6F_5)_4].^{45}$ The formation of $\boldsymbol{5},$ confirmed by X-ray crystallography,⁴⁴ underlines the fact that replacement of F by H at the para positions of the arene rings precludes nucleophilic aromatic substitution on the borane 2, while maintaining sufficiently high Lewis-acidity to effect H₂ activation in combination with a sterically encumbered phosphine base.

The reversibility of H₂ activation was examined with various experiments. Heating solutions of 4 and 5 to 80 °C under vacuum resulted in no reaction, a situation similar to that reported for the salts $[R_3PH][HB(C_6F_5)_3]$ (R = t-Bu, 2,4,6-C₆H₂Me₃).²⁷ By contrast, placing a solution of 6 under static vacuum at 25 °C that was periodically renewed for several days resulted in the slow liberation of H₂. The concurrent generation of free phosphine and borane was evidenced by NMR spectroscopy. After 9 days, the conversion was 85% complete. In contrast $[(o-C_6H_4Me)_3PH]$ [HB(C₆F₅)₃] 7, showed no signs of H₂ liberation under the same conditions. The room temperature loss of H_2 by compound **6** was further supported by storing a solution of it under an atmosphere of D_2 . This resulted in the slow incorporation of deuterium generating the deuteriumenriched salt [(o-C₆H₄Me)₃P(H/D)] [(H/D)B(p-C₆F₄H)₃] as evidenced by the observation of additional 1:1:1 triplet in the ³¹P NMR spectrum at -12.5 ppm (${}^{1}J_{PD} = 70$ Hz) and a broad signal in the ¹¹B NMR spectrum at -24.2 ppm. Liberation of H₂ was accelerated when a solution of 6 was heated to 80 °C under vacuum, yielding 85% of free phosphine and borane overnight. Under these latter conditions, the loss of H₂ was also observed in the solid state, as storage of solid 6 at 80 °C under static vacuum overnight gave 60% yield of the FLP as evidenced by NMR spectroscopy.

In conclusion, the judicious combination of $(o-C_6H_4Me)_3P$ and the borane 1 strikes the right balance of acidity and hydridicity to allow reversible H₂ binding at 25 °C. Such systems may prove useful in H₂ transport and delivery applications where high per mass capacity is not an issue. However, these findings further suggest it may be possible to apply the reactivity of FLPs to develop new approaches to H₂ storage. Efforts to this end are underway and will be reported in due course.

Acknowledgment. The support of NSERC of Canada is gratefully acknowledged. M.U. is grateful for the award of a Feodor-Lynen Postdoctoral Fellowship by the Alexander-von-Humboldt Foundation.

Supporting Information Available: Experimental procedures and X-ray crystallographic details of 2 and 5. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Grochala, W.; Edwards, P. P. Chem. Rev. 2004, 104, 1283.
- (2) Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. J. Am. Chem. Soc. 2007, 129 1844
- (3) Stephens, F. H.; Baker, R. T.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Angew. Chem., Int. Ed. 2007, 46, 746.
- Stephens, F. H.; Pons, V.; Baker, R. T. Dalton Trans. 2007, 2613.
- (5) Marder, T. B. Angew. Chem., Int. Ed. 2007, 46, 8116.
- (6) Cheng, F.; Ma, H.; Li, Y.; Chen, J. Inorg. Chem. 2007, 46, 788.
- (7) Pun, D.; Lobkovsky, E.; Chirik, P. J. Chem. Commun. 2007, 3297.
- (8) Jiang, Y.; Berke, H. Chem. Commun. 2007, 3571.
- (9) Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.; Goldberg, K. I. (9) Denney, W. C., Fois, V., Hebden, T. J., Henekey, D. M., Goldberg, R. I. J. Am. Chem. Soc. 2006, 128, 12048.
 (10) Clark, T. J.; Russell, C. A.; Manners, I. J. Am. Chem. Soc. 2006, 128,
- 9582
- (11) Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 1334. (12) Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 9776.
- (13) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. Chem. Commun. 2001,
- 962 (14) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2003, 125, 9424.
- (15) Chen, Y.; Fulton, J. L.; Linehan, J. C.; Autrey, T. J. Am. Chem. Soc. 2005, 127, 3254.
- (16) Luo, Y.; Ohno, K. Organometallics 2007, 26, 3597
- (17) Yang, X.; Hall, M. B. J. Am. Chem. Soc. 2008, 130, 1798.
- (18) Li, Q. S.; Zhang, J.; Zhang, S. Chem. Phys. Lett. 2005, 404, 100.
 (19) Nguyen, M. T.; Nguyen, V. S.; Matus, M. H.; Gopakumar, G.; Dixon,
- D. A. J. Phys. Chem. A 2007, 111, 679.
 (20) Paul, A.; Musgrave, C. B. Angew. Chem., Int. Ed. 2007, 46, 8153.
- (21) Staubitz, A.; Besora, M.; Harvey, J. N.; Manners, I. Inorg. Chem. 2008, 47, 5910.
- Spies, P.; Erker, G.; Kehr, G.; Bergander, K.; Fröhlich, R.; Grimme, S.; Stephan, D. W. Chem. Commun. 2007, 5072
- (23) Spikes, G. H.; Fettinger, J. C.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 12232
- (24) Chase, P. A.; Welch, G. C.; Stephan D. W. Hydrogen Splitting Composition. PCT 084693, 2007
- (25) Stephan, D. W. Hydrogen Splitting Composition. U.S. Provisional Patent 60/865,684, 60/896,557, 2006.
- (26) Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science 2006, 314, 1124.
- Welch, G. C.; Stephan, D. W. J. Am. Chem. Soc. 2007, 129, 1880.
- (28) Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439.
- (29) Geier, S.; Gilbert, T. M.; Stephan, D. W. J. Am. Chem. Soc. 2008, 130, 12638.
- (30) Chase, P. A.; Welch, G. C.; Jurca, T.; Stephan, D. W. Angew. Chem., Int. Ed. 2007, 46, 8050–8053.
- (31) Sumerin, V.; Schulz, F.; Nieger, M.; Leskela, M.; T., R.; Rieger, B. Angew. Chem., Int. Ed. 2008, 47, 6001.
- (32) Sumerin, V.; Schulz, F.; Atsumi, M.; Wang, C.; Nieger, M.; Leskela, M.; Repo, T.; Pyykkö, P.; Rieger, B. J. Am. Chem. Soc. 2008, 130, 14117.
 (33) Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Commun. 2008, 1701.
 (34) Chase, P. A.; Stephan, D. W. Angew. Chem., Int. Ed. 2008, 47, 7433.
 (35) W. H. E. T. H. D. W. Angew. Chem., Int. Ed. 2008, 67, 7433.

- (35) Wang, H.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Commun. 2008, 5966. (36) Welch, G. C.; Cabrera, L.; Chase, P. A.; Hollink, E.; Masuda, J. D.; Wei, P.; Stephan, D. W. Dalton Trans. 2007, 3407.
- (37) Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Anh Vu, V. Angew. Chem., Int. Ed. 2003, 42, 4302.
- (38) Beckett, M. A.; Brassington, D. S.; Coles, S. J.; Hursthouse, M. B. Inorg. Chem. Commun. 2000, 3, 530.
- (39) Beckett, M. A.; Brassington, D. S.; Light, M. E.; Hursthouse, M. B. J. Chem. *Soc., Dalton Trans.* **2001**, 1768. (40) Gutmann, V. *Coord. Chem. Rev.* **1976**, *18*, 225.
- (41) Mayer, U.; Gutmann, V.; Gerger, W. Monatsh. Chem. 1975, 106, 1235.
 (42) Childs, R. F.; Mulholland, D. L.; Nixon, A. Can. J. Chem. 1982, 60, 801.
- (43) Britovsek, G. J. P.; Ugolotti, J.; White, A. J. P. Organometallics 2005, 24, 1685.
- (44) X-ray crystallographic data. **2**: $P2_1/n$, a = 18.1452(8), b = 12.6687(3), c = 19.7459(9) Å, $\beta = 112.8088(16)^\circ$, V = 4184.2(3) Å³, data (>3 σ) = 7345, var 653, R = 0.0461, $R_w = 0.0972$, GOF 1.024. 5: R3, a = 16.964(2), 7345, var 655, K = 0.0401, $R_W = 0.0572$, GOT 1.027, 9, Action 1.027, 9, Action 1.027, 0, Action 1.027, with twin law 100-1-10 00-1 and twin components in the ratio 0.750(2): 0.250(2).
- (45) Cabrera, L.; Welch, G. C.; Masuda, J. D.; Wei, P.; Stephan, D. W. Inorg. Chim. Acta 2005, 359, 3066.

JA808506T